Halaman

Rabu, 28 November 2012

Aplikasi Radioisotop dalam Kehidupan sehari-hari

APLIKASI RADIOISOTOP DALAM KEHIDUPAN SEHARI-HARI

Definisi
Radioisotop adalah isiotop dari zat radioaktif, dibuat dengan menggunakan reaksi inti dengan neutron.
Misalnya 92 U 238 + 0 n 1 ® 29 U 239 + g
Penggunaan radioisotope, dapat diaplikasikan dalam berbagai bidang meliputi:
A.    Bidang Kedokteran
B.    Bidang biologi
C.   Bidang industri
D.   Bidang Arkeologi
E.    Bidang Pangan
F.    Bidang Kimia
G.   Bidang Hidrologi


A.   Bidang Kedokteran

a.    Ilmu Kedokteran Nuklir
Ilmu Kedokteran Nuklir adalah cabang ilmu kedokteran yang menggunakan sumber radiasi terbuka berasal dari disintegrasi inti radionuklida buatan, untuk mempelajari perubahan fisiologi, anatomi dan biokimia, sehingga dapat digunakan untuk tujuan diagnostik, terapi dan penelitian kedokteran.
Bidang kedokteran dapat dibedakan menjadi 2 macam :
v  Radiologi, yaitu aplikasi teknologi nuklir dalam bidang kedokteran yang memanfaatkan sumber radiasi tertutup (sealed source) ataupun sumber radiasi yang dibangkitkan dengan bantuan peralatan, misalnya penggunaan jarum berupa sumber radiasi Co60, Ra226, sinar-X dan linear accelerator (linac).
v  Kedokteran nuklir, yaitu aplikasi teknologi nuklir dalam bidang kedokteran yang memanfaatkan sumber radiasi terbuka (unsealed source), misalnya penggunaan sumber radioaktif I131, P32, Tc99m, dan lain sebagainya.
Pembeda kedokteran nuklir radiologi meliputi:
v  Sumber Radiasi zat radioaktif yang terbuka pesawat pembangkit radiasi
v  Pembentukan Citra Emisi radiasi, perbedaan akumulasi radioisotop dalam berbagai bagian tubuh transmisi radiasi; perbedaan daya tembus radiasi terhadap berbagai bagian tubuh
v  Informasi yang diberikan terutama fungsional anatomis. Morfologis sejarah kedokteran Nuklir dimulai sejak tahun 1901 oleh Henry Danlos. Pada waktu itu Henry Danlos menggunakan Radium (Ra226) untuk pengobatan tuberculosis pada kulit George C de Hevessy yang merintis pemakaian perunut zat radioaktif dalam bidang kedokteran. Pada saat itu yang digunakan sebagai perunut adalah radioisotop alam Pb212. Sedangkan bidang Radiologi ditemukan sejak tahun 1895 oleh C. Roentgen, seorang fisikawan Jerman. Pada tahun 1928 International Commission on Radiological Protection (ICRP) menetapkan dosis radiasi yang diizinkan.
Pada kedokteran Nuklir, radioisotop dapat dimasukkan ke dalam tubuh pasien (studi invivo) maupun hanya direaksikan saja dengan bahan biologis antara lain darah, cairan lambung, urine da sebagainya, yang diambil dari tubuh pasien yang lebih dikenal sebagai studi in-vitro (dalam gelas percobaan).
Pada studi in-vivo, setelah radioisotop dapat dimasukkan ke dalam tubuh pasien melalui mulut atau suntikan atau dihirup lewat hidung dan sebagainya maka informasi yang dapat diperoleh dari pasien dapat berupa:
v  Citra atau gambar dari organ atau bagian tubuh pasien yang dapat diperoleh dengan bantuan peralatan yang disebut kamera gamma ataupun kamera positron (teknik imaging)
v  Kurva-kurva kinetika radioisotop dalam organ atau bagian tubuh tertentu dan angka-angka yang menggambarkan akumulasi radioisotop dalam organ atau bagian tubuh tertentu disamping citra atau gambar yang diperoleh dengan kamera gamma atau kamera positron
v  Radioaktivitas yang terdapat dalam contoh bahan biologis (darah, urine dsb) yang diambil dari tubuh pasien, dicacah dengan instrumen yang dirangkaikan pada detektor radiasi (teknik non-imaging).
Pada studi in-vitro, dari tubuh pasien diambil sejumlah tertentu bahan biologis misalnya 1 ml darah. Cuplikan bahan biologis tersebut kemudian direaksikan dengan suatu zat yang telah ditandai dengan radioisotop. Pemeriksaannya dilakukan dengan bantuan detektor radiasi gamma yang dirangkai dengan suatu sistem instrumentasi. Studi semacam ini biasanya dilakukan untuk mengetahui kandungan hormon-hormon tertentu dalam darah pasien seperti insulin, tiroksin dll.
Pemeriksaan kedokteran nuklir banyak membantu dalam menunjang diagnosis berbagai penyakitseperti penyakit jantung koroner, penyakit kelenjar gondok, gangguan fungsi ginjal, menentukan tahapan penyakit kanker dengan mendeteksi penyebarannya pada tulang, mendeteksi pendarahan pada saluran pencernaan makanan dan menentukan lokasinya, serta masih banyak lagi yang dapat diperoleh dari diagnosis dengan penerapan teknologi nuklir yang pada saat ini berkembang pesat. Disamping membantu penetapan diagnosis, kedokteran nuklir juga berperanan dalam terapi-terapi penyakit tertentu, misalnya kanker kelenjar gondok, hiperfungsi kelenjar gondok yang membandel terhadap pemberian obat-obatan non radiasi, keganasan sel darah merah, inflamasi (peradangan)sendi yang sulit dikendalikan dengan menggunakan terapi obat-obatan biasa. Bila untuk keperluan diagnosis, radioisotop diberikan dalam dosis yang sangat kecil, maka dalam terapi radioisotop sengaja diberikan dalam dosis yang besar terutama dalam pengobatan terhadap jaringan kanker dengan tujuan untuk melenyapkan sel-sel yang menyusun jaringan kanker itu.
Di Indonesia, kedokteran nuklir diperkenalkan pada akhir tahun 1960-an, yaitu setelah reaktor atom Indonesia yang pertama mulai dioperasikan di Bandung. Beberapa tenaga ahli Indonesia dibantu oleh tenaga ahli dari luar negeri merintis pendirian suatu unit kedokteran nuklir di Pusat Penelitian dan Pengembangan Teknik Nuklir di Bandung. Unit ini merupakan cikal bakal Unit Kedokteran Nuklir RSU Hasan Sadikin, Fakultas Kedokteran Universitas Padjadjaran. Menyusul kemudian unit-unit berikutnya di Jakarta (RSCM, RSPP, RS Gatot Subroto) dan di Surabaya (RS Sutomo). Pada tahun 1980-an didirikan unit-unit kedokteran nuklir berikutnya di RS sardjito (Yogyakarta) RS Kariadi (Semarang), RS Jantung harapan Kita (Jakarta) dan RS Fatmawati (Jakarta). Dewasa ini di Indonesia terdapat 15 rumah sakit yang melakukan pelayanan kedokteran nuklir dengan menggunakan kamera gamma, di samping masih terdapat 2 buah rumah sakit lagi yang hanya mengoperasikan alat penatah ginjal yang lebih dikenal dengan nama Renograf.
b.    Ilmu Kedokteran Nuklir Molekuler
Perkembangan disiplin ilmu baru yaitu ilmu kedokteran molekuler (moleculer medicine). Beranjak dari konsep ilmu kedokteran molekuler, maka diagnosis, terapi, dan pemantauan penyakit menjadi berdasarkan molekuler. Akan terjadi perobahan cara pandang penyakit dari organ (organ oriented) menjadi molekuler (moleculer oriented). Dengan keunikannya, ilmu kedokteran nuklir akan banyak bersinggungan dengan ilmu kedokteran molekuler. Bidang garapan kedokteran nuklir dimasa akan lebih tertuju pada studi in-vivo tentang metabolisme, imunologi, serta reseptor seperti reseptor endokrin, tumor, dan neorotransmiter. Radiofarmaka molekuler akan banyak digunakan, yang sebagian berasal dari radionuklida waktu paroh pendek produksi siklotron. Perkembangan tersebut melahirkan paradigma baru yaitu Kedokteran Nuklir Molekuler yang merupakan penegasan dari hakikat ilmu kedokteran dalam perspektif perkembangan ilmu dan teknologi kedokteran. Dari sudut pandang kedokteran nuklir molekuler, masalah pasien akan dilihat sebagai disfungsi molekuler bukan kelainan struktural.

B.   Bidang Biologi
Perkembangan ilmu biologi molekuler sangat erat kaitannya dengan analisis molekul kimiawi dalam tubuh mahluk hidup. Analisis molekul dapat dilakukan berdasarkan atas reaksi kimiawi yang ditimbulkan oleh interaksi dengan molekul yang lainnya atau berdasarkan struktur fisiknya. Beberapa metode yang sering digunakan dalam studi biologi molekuler adalah penggunaan radioisotop.
Isotop adalah elemen kimia yang intinya mempunyai jumlah proton yang sama, akan tetapi massa atomnya (jumlah proton dan neutron) berbeda. Beberapa isotop bersifat tidak stabil dan mengalami peluruhan secara spontan yang terkadang diikuti oleh penyebaran radiasi elektromagnetik. Atom-atom yang bersifat demikian dinamakan Radioisotop.
Beberapa manfaat radioisotop dalam ilmu biologi:
v  Radioisotop banyak digunakan dalam studi biologi molekuler seperti menganalisis urutan basa DNA. Urutan basa DNA dapat ditentukan dengan membaca autoradioaktivitas fragmen¬- fragmen polinukleotida pada gel elektroforesis
v  Radioisotop digunakan untuk mempelajari mekanisme reaksi fotosintesis. Radioisotop berupa C-14 atau O-18 atau keduanya dapat mengetahui asal usul atom oksigen ( dari CO2 atau dari H2O) yang membentuk senyawa glukosa atau oksigen yang terbentuk pada proses fotosintesis
v  Mempelajari proses penyerapan air dan sirkulasinya di dalam batang tumbuhan
v  Mempelajari pengaruh unsur-unsur hara selain unsure N, P dan K terhadap perkembangan tumbuhan
v  Memacu mutasi gen tumbuhan dalam upaya mendapatkan bibit unggul
v  Isotop radioaktif seperti 3H, 14C, 32P, 35S, 86Rb, 125I dapat digunakan untuk mengetahui aspek metabolik dalam sel, bakteri, yeast, tanaman, binatang, dan manusia dalam mengurai sifat dasar pada materi genetik.

C.   Bidang Industri

a.    Untuk Mendeteksi Kebocoran
Radioisotop digunakan untuk mendeteksi kebocoran pipa yang ditanam di dalam tanah atau dalam beton. Isotop dimasukannya ke dalam aliran pipa, maka kebocoran pipa dapat dideteksi tanpa penggalian tanah atau pembongkaran beton. Radioisotop yang  digunakan sebagai perunut untuk menguji kebocoran cairan/gas dalam pipa misalnya sedikit garam 24NaCl di masukkan kedalam aliran pipa, selanjutnya detektor geiger-Muller digerakkan mengikuti aliran pipa. Selanjutnya Detektor akan menangkap radiasi pada pipa yang mengalami kebocoran.

b.    Untuk Menentukan Kehausan atau Keroposan Yang Terjadi pada Bagian Pengelasan atau Logam
Jika bagian pengelasan atau logam ini disinari dengan sinar gamma dan dibalik bahan itu diletakkan film foto maka pada bagian yang terdapat kehausan atau kekeroposan akan memberikan gambar yang tidak merata.

c.    Untuk Mengetahui adanya Cacat pada Material
Pada bidang industri aplikasi baja perlu dianggap bahwa semua bahan selalu mengandung cacat. Cacat dapat berupa cacat bawaan dan cacad yang terjadi akibat penanganan yang tidak benar. Cacat pada material merupakan sumber kegagalan dalam industri baja. Penyebab timbulnya cacat pada material, meliputi desain yang tidak tepat, proses fabrikasi dan pengaruh lingkungan. Desain yang tidak tepat meliputi pemilihan bahan, metode pengerjaan panas yang tidak tepat dan tidak dilakukannya uji mekanik. Proses fabrikasi meliputi keretakan karena penggrindaan, cacat proses fabrikasi dan cacad pengelasan. Kondisi operasi lingkungan meliputi korosi. Untuk mengetahui adanya cacad pada material makadigunakan suatu pengujian material tak merusak yang salah satunya adalah dengan metode radiografi sinar gamma.
Teknik radiografi merupakan salah satu metode pengujian material tak-merusak yang selama ini sering digunakan oleh industri baja untuk menentukan jaminan kualitas dari produk yang dihasilkan. Teknik ini adalah pemeriksaan dengan menggunakan sumber radiasi (sinar-x atausinar gamma) sebagai media pemeriksa dan film sebagai perekam gambar yang dihasilkan. Radiasi melewati benda uji dan terjadi atenuasi dalam benda uji. Sinar yang akan diatenuasi tersebut akan direkam oleh film yang diletakkan pada bagian belakang dari benda uji. Setelah film tersebut diproses dalam kamar gelap maka film tersebut dapat dievaluasi. Bila terdapat cacad pada benda uji maka akan diamati pada film radiografi dengan melihat perbedaan kehitaman atau densitas.
Pemilihan sumber radiasi berdasarkan pada ketebalan benda yang diperlukan karena daya tembus sinar gamma terhadap material berbeda. Pada sumber pemancar sinar gamma tergantung besar aktivitas sumber. Sedangkan pemilihan tipe film sangat mempengaruhi pemeriksaan kualitas material. Film digunakan untuk merekam gambar material yang diperiksa. Pemilihan tipe film yang benarakan menghasilkan kualitas hasil radiografi yang sangat baik. Pada umumnya kita mengenal dua macam jenis film, yaitu film cepat dan film lambat. Pada film cepat butir-butirannya besar, kekontrasan dan definisinya kurang baik. Sedangkan pada film lambat butir-butirannya kecil, kekontrasan dan definisinya lebih baik. Penentuan jarak sumber ke film (SFD) juga mempengaruhi hasil kualitas film radiografi. Penghitungan SFD yang tidak benar mempengaruhi tingkat kehitaman atau density hasil film radiografi sehingga akan mempengaruhi tingkat sensitivitas atau tingkat ketelitian.

d.    Mengontrol Ketebalan Bahan
Ketebalan produk yang berupa lembaran, seperti kertas film atau lempeng logam
dapat dikontrol dengan radiasi. Prinsipnya sama seperti diatas, bahwa intensitas radiasi yang diteruskan bergantung pada ketebalan bahan yang dilalui. Detektor radiasi dihubungkan dengan alat penekan. Jika lembaran menjadi lebih tebal, maka intensitas radiasi yang diterima detektor akan berkurang dan mekanisme ala akan mengatur penekanan lebih kuat sehingga ketebalan dapat dipertahankan.

D.   Bidang Arkeologi
Teknik penentuan umur suatu benda yang menggunakan radioisotop disebut Carbon Dating. Prinsip kerja teknik ini adalah membandingkan konsentrasi unsur karbon yang tidak stabil pada suatu benda dengan benda lainnya. Teknik ini banyak digunakan oleh para ahli geologi, antropologi dan arkeologi untuk menentukan umur benda yang mereka temukan.
Cara penentuan umur dengan radiokarbon pertamakali dikembangkan oleh W.F. Libby. Radiokarbon yang dimaksudkan di sini adalah atom karbon C-14 yang dihasilkan di atmosfer melalui reaksi yang diinduksi neutron berenergi. Pada mulanya sinar kosmik sebagian besar terdiri dari proton berenenrgi, hasil reaksinya dengan gas di atmosfer, dapat menghasilkan bernmacam-macam frragmen inti seperti neutron cepat yang bereaksi dengan isotop N-14.
Selain untuk menentukan umur benda-benda purbakala, radioisotop bisa dihgunakan di bidang seni. Dalam bidang ini, radioisotop dapat juga digunakan untuk mengetahui pemalsuan lukisan. Seorang pemalsu akan menggunakan cat yang dibuat pada abad sekarang. Dengan mengetahui banyaknya unsur radioaktif pada cat akan diketahui umur lukisan tersebut sebenarnya.

E.   Bidang Pangan
Radioisotop juga dapat digunakan untuk pengawetan bahan makanan, diantaranya adalah dengan cara menggunakan radiasi sinar gamma dari isotop Co-60 dan pembekuan.
a.       Pengawetan menggunakan radiasi sinar gamma
Radioisotop juga digunakan untuk radiasi bahan pangan seperti sayur dan buah-buahan sebagai metode pengawetan. Radiasi dapat membunuh mikroorganisme yang menyebabkan pembusukan makanan. Radiasi tidak mengubah warna, bentuk, dan rasa makanan. Namuh hal itu tidak terbukti secara ilmiah. Tidak ada residu radiasi dalam makanan setelah diradiasi sehingga makanan yang diawetkan dengan radiasi cukup aman dikonsumsi.
b.      Pengawetan dengan Pembekuan
Pada umumnya pembekuan produk pangan menggunakan teknologi pembekuan (refrigerant) konvensional berbahan pendingin amonia atau di masa lalu menggunakan freon-CFC (chloroflurocarbon) yang ternyata terbukti menjadi gas-gas penyebab kerusakan ozon.

F.    Bidang Kimia

a.    Radioisotop sebagai Perunut
Salah satu peran radioisotop adalah sebagai perunut. Teknik perunut dapat dipakai untuk mempelajari mekanisme berbagai reaksi kimia esterifikasi, fotosintesis dan kesetimbangan dinamis. Radiotracer (radionuklida perunut) adalah spesi kimia yang mengandung radionuklida dan aktivitasnya dimonitor untuk mengikuti proses kimia atau proses fisika, atau untuk menunjukkan posisi atau lokasi suatu zat kimia
Terdapat beberapa faktor yang harus diperhatikan dalam pemilihan radionuklida perunut :
v  Harus memiliki sifat kimia dan fisika yang sama dengan sistem yang dipelajari.
v  Radionuklida perunut harus memiliki waktu hidup yang cukup panjang sehingga aktivitasnya dapat dideteksi dengan baik.
v  Jenis radiasi yang dipancarkan harus menjadi pertimbangan terutama kemampuan penetrasi dan kemudahannya untuk diukur.


b.    Mempelajari Reaksi Esterifikasi
Reaksi esterifikasi yaitu reaksi pembentukan suatu ester yang dapat dibentuk dengan reaksi langsung antara suatu asam karboksilat dan suatu alkohol. Esterifikasi berkataliskan asam dan merupakan reaksi yang reversibel. Asam karboksilat bereaksi dengan alkohol membentuk ester dan air.
c.    Mempelajari Kesetimbangan Dinamis
Kesetimbangan dinamis kimia bersifat dinamis artinya bahwa dalam keadaan setimbang reaksi tetap berlangsung dengan laju yang sama pada kedua arah. Hal itu dapat dibuktikan sebagai berikut. Perhatikan kesetimbangan PbI2 (timbal (II) klorida) padat dan
larutan jenuhnya yang mengandung Pb2+(aq) dan I-(aq).
d.    Analisis/Titrasi Radiometri
Analisis radiometri adalah cara analisis kimia untuk unsur atau zat tak radioaktif dengan jalan penambahan zat radioaktif dan Analisis radiometri ini digunakan untuk menentukan kadar zat yang sangat rendah dalam suatu campuran. Penentuan kadar Ag+ ataupun Cl- dapat menggunakan radioisotop. Jika yang ingin ditentukan kadar Cl- maka yang digunakan adalah Ag dalam bentuk radioisotop (110Ag+) dan jika yang ingin ditentukan kadar Ag maka yang digunakan ion radioklor.
e.    Analisis Pengenceran Isotop
Analisis pengenceran isotop untuk menentukan kadar suatu zat dengan cara menambahkan zat radioaktif yang sudah diencerkan ke dalam zat yang akan ditentukan kadarnya.
f.     Analisis Aktivasi Neutron (AAN)
Analisis aktivasi neutron adalah adalah analisis unsur-unsur dalam sampel yang didasarkan pada pengubahan isotop stabil oleh isotop radioaktif melalui pemboman sampel oleh neutron atau proses pengaktifan neutron dapat diartikan juga sebagai proses reaksi inti dimana unsur-unsur yang semula tidak radioaktif berubah sifat fisikanya menjadi radioaktif sehingga dapat memancarkan radiasi. Analisis pengaktifan neutron dilakukan untuk menentukan zat yang berkadar rendah dengan cara menembak unsur yang dimaksud agar menghasilkan radioisotop dan memancarakan sinar.

G.   Bidang Hidrologi
Penggunaan radioisotop sebagai perunut untuk suatu penyelidikan bertujuan untuk mendapatkan suatu informasi atau jawaban suatu permasalahan hidrologi tertentu. Data atau informasi yang diperoleh akan menjadi masukan untuk tindak lanjut perbaikan (problem solving) dari masalah yang dihadapi. Prinsip dasar dari teknik perunut adalah penandaan (pelabelan) terhadap suatu sistem (hidrologi) atau bagian dari sistem yang akan diselidiki, segala kelakuan dan peristiwa yang dialami oleh sistem tersebut diketahui dari hasil pemonitoran perunut yang memberikan informasi tentang kelakuan dari sistem secara keseluruhan. Untuk dapat dipakai sebagai perunut, suatu bahan harus memenuhi kriteria tertentu dimana bahan perunut tersebut harus dapat menyatu atau menjadi bagian dari sistemnya, dan kehadirannya dalam sistem tidak boleh mengganggu, mengubah atau mempengaruhi sistem yang diselidiki.
Beberapa manfaat radioisotop dalam bidang hidrologi adalah:
v  Penentuan Gerakan Sedimen di Pelabuhan dan Daerah Pantai
v  Mendeteksi Zat Pencemar dalam Air
v  Menentukan Kebocoran Dam atau Bendungan
v  Mengetahui Gerakan Air Tanah
v  Mengetahui Karakteristik Aliran Cairan di Sumur Minyak
v  Pengukuran Debit Air Sungai
v  Melakukan Studi Geothermal
v  Teknik Gauging
Selain dengan teknik perunut radioisotop, dikenal pula teknik gauging. Dalam teknik ini radioisotop digunakan sebagai sumber tertutup. Efek radiasi terhadap system dapat mengetahui keadaan system tersebut. Penggunaan teknik gauging ini antara lain untuk mengukur kandungan air dalam tanah, kepadatan tanah, aspal dan beton. Teknik ini sangat luas pemakaianya dalam teknik sipil antara lain pondasi bangunan, jalan raya, pembuatan tanggul dan lain-lain.











Kamis, 22 November 2012

Aplikasi Nuklir dan Radioisotop dalam Industri

APLIKASI NUKLIR DAN RADIOISOTOP DALAM INDUSTRI
A.  Untuk Mendeteksi Kebocoran
Radioisotop digunakan untuk mendeteksi kebocoran pipa yang ditanam didalam tanah atau dalam beton. Isotop dimasukannya ke dalam aliran pipa, maka kebocoran pipa dapat dideteksi tanpa penggalian tanah atau pembongkaran beton. Radioisotop yang  digunakan sebagai perunut untuk menguji kebocoran cairan/gas dalam pipa misalnya sedikit garam 24NaCl di masukkan kedalam aliran pipa, selanjutnya detektor geiger-Muller digerakkan mengikuti aliran pipa. Selanjutnya Detektor akan menangkap radiasi pada pipa yang mengalami kebocoran.
B.  Untuk Menentukan Keroposan Yang Terjadi pada Bagian Pengelasan atau Logam.
Jika bagian pengelasan atau logam disinari dengan sinar gamma dan dibalik bahan diletakkan film foto maka pada bagian yang terdapat kehausan atau kekeroposan akan memberikan gambar yang tidak merata.
C.  Untuk Mengetahui adanya Cacat pada Material
Pada bidang industri aplikasi baja perlu dianggap bahwa semua bahan selalu mengandung cacad. Cacad dapat berupa cacad bawaan dan cacad yang terjadi akibat penanganan yang tidak benar. Cacad pada material merupakan sumber kegagalan dalam industri baja. Penyebab timbulnya cacad pada material, meliputi desain yang tidak tepat, proses fabrikasi dan pengaruh lingkungan. Desain yang tidak tepat meliputi pemilihan bahan, metode pengerjaan panas yang tidak tepat dan tidak dilakukannya uji mekanik. Proses fabrikasi meliputi keretakan karena penggrindaan, cacad proses fabrikasi dan cacad pengelasan. Kondisi operasi lingkungan meliputi korosi. Untuk mengetahui adanya cacad pada material makadigunakan suatu pengujian material tak merusak yang salah satunya adalah dengan metode radiografi sinar gamma.
Teknik radiografi merupakan salah satu metode pengujian material tak-merusak yang selama ini sering digunakan oleh industri baja untuk menentukan jaminan kualitas dari produk yang dihasilkan. Teknik ini adalah pemeriksaan dengan menggunakan sumber radiasi (sinar-x atau sinar gamma) sebagai media pemeriksa dan film sebagai perekam gambar yang dihasilkan. Radiasi melewati benda uji dan terjadi atenuasi dalam benda uji. Sinar yang akan diatenuasi tersebut akan direkam oleh film yang diletakkan pada bagian belakang dari benda uji. Setelah film tersebut diproses dalam kamar gelap maka film tersebut dapat dievaluasi. Bila terdapat cacad pada benda uji maka akan diamati pada film radiografi dengan melihat perbedaan kehitaman atau densitas.
Pemilihan sumber radiasi berdasarkan pada ketebalan benda yang diperlukan karena daya tembus sinar gamma terhadap material berbeda. Pada sumber pemancar sinar gamma tergantung besar aktivitas sumber. Sedangkan pemilihan tipe film sangat mempengaruhi pemeriksaan kualitas material. Film digunakan untuk merekam gambar material yang diperiksa. Pemilihan tipe film yang benarakan menghasilkan kualitas hasil radiografi yang sangat baik. Pada umumnya kita mengenal dua macam jenis film, yaitu film cepat dan film lambat. Pada film cepat butir-butirannya besar, kekontrasan dan definisinya kurang baik. Sedangkan pada film lambat butir-butirannya kecil, kekontrasan dan definisinya lebih baik. Penentuan jarak sumber ke film (SFD) juga mempengaruhi hasil kualitas film radiografi. Penghitungan SFD yang tidak benar mempengaruhi tingkat kehitaman atau density hasil film radiografi sehingga akan mempengaruhi tingkat sensitivitas atau tingkat ketelitian.
D.  Pemeriksaan Pemerusak.
Radiasi sinar gamma dapat digunakan untuk memeriksa cacat pada logam atau sambungan las, yaitu dengan meronsen bahan tersebut. Teknik ini berdasarkan sifat bahwa semakin tebal bahan yang dilalui radiasi, maka intensitas radiasi yang diteruskan makin berkurang, jadi dari gambar yang dibuat dapat terlihat apakah logam merata atau ada bagian-bagian yang berongga didalamnya. Pada bagian yang berongga itu film akan lebih hitam.
E.  Mengontrol Ketebalan Bahan
Ketebalan produk yang berupa lembaran, seperti kertas film atau lempeng logam
dapat dikontrol dengan radiasi. Prinsipnya sama seperti diatas, bahwa intensitas radiasi yang diteruskan bergantung pada ketebalan bahan yang dilalui. Detektor radiasi dihubungkan dengan alat penekan. Jika lembaran menjadi lebih tebal, maka intensitas radiasi yang diterima detektor akan berkurang dan mekanisme ala akan mengatur penekanan lebih kuat sehingga ketebalan dapat dipertahankan.